Protótipos com radiação uv-c para esterilização de máscaras n95/pff2, ambientes e superfícies hospitalares
PDF

Palavras-chave

Covid-19
equipamentos de proteção individual
desinfecção
reuso de máscaras N95/PFF2

Como Citar

Longhini, T. M., Alves, A. A., Amaral, N. F. de A., Lage, R. M., Oliveira , R. M. de, & Souza, P. F. R. de. (2022). Protótipos com radiação uv-c para esterilização de máscaras n95/pff2, ambientes e superfícies hospitalares. ForScience, 10(1), e01050. https://doi.org/10.29069/forscience.2022v10n1.e1050

Resumo

Durante a pandemia do novo Coronavírus, os profissionais de saúde têm atuado com risco de contaminação de ambientes hospitalares e com a escassez de Equipamentos de Proteção Individuais (EPIs), como as máscaras N95/PFF2 de uso obrigatório para proteção respiratória, que vem sendo reutilizadas sem esterilização para inativar o Covid-19. Tal situação eleva o risco de contaminação destes profissionais e a de diminuição da mão de obra na pandemia. O objetivo desta pesquisa é desenvolver protótipo(s) UV-c para esterilização de máscaras N95/PFF2, ambientes e superfícies hospitalares, conforme especificações técnicas de agências internacionais de saúde, disponíveis nas Recomendações de Padrões de Cuidados em Crise. A eficiência foi aferida com o uso de um medidor radiação ultravioleta digital faixa 254NM e com testes microbiológicos. Os resultados indicaram eficácias de esterilização de 96,06%, 81,34% e 73,96% para CDUV-c Maior, CDUV-c Menor e RDUV-c, respectivamente, o que indica possibilidades de adaptação nos protótipos, conforme indicações sugeridas pela bibliografia. Para disseminação das tecnologias, o projeto foi disponibilizado em open source,
cujos códigos e especificações estão abertos e o licenciamento é livre. Pretende-se, com esta tecnologia, promover a prevenção e gerenciamento de riscos para proteger a equipe médica, uma vez que há um suprimento limitado de N95/PFF2 e trazer soluções hospitalares para e além da pandemia do Covid-19.

Palavras-chave: covid-19; equipamentos de proteção individual; desinfecção; reuso de máscaras N95/PFF2.

 

Prototypes with uv-c radiation for sterilization of n95 / pff2 masks, hospital environments and surfaces

 

Abstract

During the pandemic of the new Coronavirus, health professionals have acted at risk of contamination of hospital environments and with the scarcity of Personal Protective Equipment (PPE), such as the N95 / PFF2 masks of mandatory use for respiratory protection, which has been reused without sterilization to inactivate Covid-19. Such situation increases the risk of contamination of these professionals and the reduction of the workforce in the pandemic. The objective of this research is to develop prototype (s) UV-c for sterilization of N95 / PFF2 masks, environments and hospital surfaces, according to technical specifications of international health agencies, available in the Recommendations for Care Standards in Crisis. Efficiency will be measured using a 254NM digital ultraviolet meter and microbiological tests. The results indicated sterilization efficacies of 96.06%, 81.34% and 73.96% for CDUV-c Major, CDUV-c Minor and RDUV-c, respectively, which indicates possibilities of adaptation in the prototypes, according to indications suggested by the bibliography. In order to disseminate the technologies, the project was made available in open source, which codes and specifications are open and licensing is free. The aim of this technology is to promote prevention and risk management to protect the medical team, since there is a limited supply of N95 / PFF2 and to bring hospital solutions for and beyond the Covid-19 pandemic.

Keywords: Covid-19; Personal protective equipment; Disinfection; Reuse of N95/PFF2 masks.

https://doi.org/10.29069/forscience.2022v10n1.e1050
PDF

Referências

M COMPANY. Disinfection of Filtering Facepiece Respirators. Technical Bulletin, Saint Paul (EUA), Mar. 2020. Disponível em: http://project-manus.mit.edu/wp-content/uploads/2020/03/Disinfection-of-3M_-Filtering-Facepiece-Respirators.pdf. Acesso em: 17 dez. 2020.

UNITED STATES PATENT. Seyed A. Angadjivand; Marvin E. Jones; Daniel E. Meyer. Electret filter media. 6,119,691. 19 sep. 2000. Disponível em: https://patentimages.storage.googleapis.com/ef/bf/5d/916819b4cdff45/US6119691.pdf. Acesso em: 11 abr. 2020.

BAR-ON, Y. M.; FLAMHOLZ, A.; PHILLIPS, R.; MILO, R. Science Forum: SARS-CoV-2 (COVID-19) by the numbers. eLife, v. 9, e57309, DOI: 10.7554/eLife.57309, 2020. Disponível em: https://elifesciences.org/articles/57309. Acesso em: 19 abr. 2020.

BERGMAN, M. S.; VISCUSI, D. J.; HEIMBUCH, B. K.; WANDER, J. D.; SAMBOL, A. R.; SHAFFER, R. E. Evaluation of Multiple (3-Cycle) Decontamination Processing for Filtering Facepiece Respirators. Journal of Engineered Fibers and Fabrics, v. 5, p. 33-41, 2010. Disponível em: https://journals.sagepub.com/doi/pdf/10.1177/155892501000500405. Acesso em: 19 abr. 2020.

BERGMAN, M.S.; VISCUSI, D.J.; PALMIERO, A.J.; POWELL, J.B.; SHAFFER, R. E. Impact of three cycles of decontamination treatments on filtering facepiece respirator fit. Journal of the International Society for Respiratory Protection, v. 28, n. 1, p. 48-59, 2011. Disponível em: https://www.isrp.com/the-isrp-journal/journal-public-abstracts/1135-vol-28-no-1-2011-pp-48-59-bergman-open-access/file. Acesso em: 19 abr. 2020.

BLAIR, F. M.; WASSELL, R. W. A survey of the methods of disinfection of dental impressions used in dental hospitals in the United Kingdom. British dental journal, London, v. 180, p. 369-375, doi.org/10.1038/sj.bdj.4809092, 1996. Disponível em: https://www.nature.com/articles/4809092. Acesso em: 20 abr. 2020.

BRASIL. Ministério da Saúde. Classificação de risco dos agentes biológicos. 3. ed. Brasília: Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento do Complexo Industrial e Inovação em Saúde, 2017. 48 p. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/classificacao_risco_agentes_biologicos_3ed.pdf. Acesso em: 17 dez. 2020.

BRICKNER, P. W.; VINCENT, R. L.; FIRST, M.; NARDELL, E.; MURRAY, M.; KAUFMAN, W. The application of ultraviolet germicidal irradiation to control transmission of airborne disease: bioterrorism countermeasure. Public Health Report, v. 118, n. 2, p. 99-114, doi:10.1093/phr/118.2.99, 2003. Disponível em: https://pubmed.ncbi.nlm.nih.gov/12690064/. Acesso em: 20 abr. 2020.

CASTRO, C. S.; HOLZGREFE, J. V.; REIS, R. B.; ANDRADE, B. B.; QUINTANILHA, L. F. COVID-19 pandemic: scenario of the Brazilian health system for coping with the crisis. Research, Society and Development, v. 9, n. 7, 2020. p. 1-8. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4383/3751. Acesso em: 17 dez. 2020.

CENTERS OF DISEASE CONTROL AND PREVENTION – CDC. Implementing Filtering Facepiece Respirator (FFR) Reuse, Including Reuse after Decontamination, When There Are Known Shortages of N95 Respirators. Atlanta, GA, 2020c. Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/decontamination-reuse-respirators.html. Acesso em 21 abr. 2020.

CENTERS OF DISEASE CONTROL AND PREVENTION – CDC. Decontamination and Reuse of Filtering Facepiece Respirators. Atlanta, GA, 2020b. Disponível em: https://stacks.cdc.gov/view/cdc/90574. Acesso em 21 abr. 2020.

CENTERS OF DISEASE CONTROL AND PREVENTION – CDC. NIOSH-Approved Particulate Filtering Facepiece Respirators. Atlanta, GA, 2020c. Disponível em: https://www.cdc.gov/niosh/npptl/topics/respirators/disp_part/default.html. Acesso em 21abr. 2020.

CENTERS OF DISEASE CONTROL AND PREVENTION – CDC. Strategies for Optimizing the Supply of N95 Respirators. Atlanta, GA, 2020d. Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/hcp/respirators-strategy/index.html. Acesso em 21 abr. 2020.

CENTERS OF DISEASE CONTROL AND PREVENTION – CDC. Summary for healthcare facilities: strategies for optimizing the supply of ppe during shortages. Atlanta, GA, 2020e. Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/strategies-optimize-ppe-shortages.html. Acesso em 17 dez. 2020.

CIVELLO, P. M.; VICENTE, A. R.; MARTÍNEZ, G. A. UV-C technology to control postharvest diseases of fruits and vegetables. In: TRONCOSO-ROJAS, R.; TIZNADO- HERNÁNDEZ, M. E.; GONZÁLEZ-LEÓN A. (Ed.). Recent advances in alternative postharvest technologies to control fungal diseases in fruits & vegetables. Kerala, India: Research Signpost, 2006. Cap. 4. p. 71-102.

CUTLER, T. D.; ZIMMERMAN, J. J. Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents. Animal Health Research Reviews, v. 12, n. 1, p. 15-23, doi:10.1017/S1466252311000016, 2011. Disponível em: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/1FA44143D8ABA87E4761BD95E68C2952/S1466252311000016a.pdf/ultraviolet-irradiation-and-the-mechanisms-underlying-its-inactivation-of-infectious-agents.pdf. Acesso em: 12 dez. 2020.

DUIZER, E.; BIJKERK, P.; ROCKX, B.; GROOT, A.; TWISK, F.; KOOPMANS, M. Inactivation of caliciviruses. Applied and Environmental Microbiology, v. 70, n. 8, p. 4538–4543, DOI: 10.1128/AEM.70.8.4538–4543.2004, 2004. Disponível em: https://journals.asm.org/doi/10.1128/AEM.70.8.4538-4543.2004. Acesso em: 12 abr. 2020.

EVANCHO, G. M.; SVEUM, W. H.; MOBERG, L. J.; FRANK, J. F. Microbiological monitoring of the food processing environment. In: DOWNES F. P.; ITO, K. (ed.). Compendium of methods for the microbiological examination of foods. 4. ed. Washington, D.C.: APHA; 2001. p. 25-36.

FISHER; E. M.; SHAFFER, R. E. Considerations for recommending extended use and limited reuse of filtering facepiece respirators in health care settings. Journal of Occupational and Environmental Hygiene, v. 11, n. 8, p. D115-D128, 2014. Doi: 10.1080/15459624.2014.902954. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610368/. Acesso em: 12 dez. 2020.

FISHER, E. M.; WILLIAMS, J. L.; SHAFFER, R. E. Evaluation of Microwave Steam Bags for the Decontamination of Filtering Facepiece Respirators. Plos One, v. 6, n. 4, e18585, Doi: https://doi.org/10.1371/journal.pone.0018585, April 2011. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018585. Acesso em: 12 abr. 2020.

FERENCZY, A.; BERGERON, C.; RICHART, R. M. Human papillomavirus DNA in fomites on objects used for the management of patients with genital human papillomavirus infections. International Journal of Gynecology & Obstetrics, v. 74, n. 6, p. 950-954, DOI: https://doi.org/10.1016/0020-7292(90)90371-Q, 1989. Disponível em: https://obgyn.onlinelibrary.wiley.com/doi/abs/10.1016/0020-7292%2890%2990371-Q. Acesso em: 12 abr. 2020.

GAYÁN, E.; CONDÓN, S.; ÁLVAREZ, I. Biological aspects in food preservation by ultraviolet light: a review. Food and Bioprocess Technology, New York, v. 7, n. 1, p. 1-20, DOI:10.1007/s11947-013-1168-7, 2014. Disponível em: http://ssu.ac.ir/cms/fileadmin/user_upload/Mtahghighat/tfood/ARTICLES/microb-safety/Biological_Aspects_in_Food_Preservation_by_Ultraviolet.pdf. Acesso em: 12 dez. 2020.

GERCHMAN, Y.; MAMANE, H.; FRIEDMAN, N.; MANDELBOIM, M. UV-LED disinfection of Coronavirus: wavelength effect. Journal of Photochemistry and Photobiology B: Biology, v. 212, DOI: https://doi.org/10.1016/j.jphotobiol.2020.112044. 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S1011134420304942?via%3Dihub. Acesso em: 19 dez. 2020.

GRABOIS, V. et al. Adaptação da capacidade hospitalar em resposta à pandemia por COVID-19. Rio de Janeiro, [2020]. (Nota Técnica). Disponível em: https://portal.fiocruz.br/sites/portal.fiocruz.br/files/documentos/nt_fiocruz-puc-ime-ufrj-nku_adaptacao_capacidade_hospitalar_covid-19.pdf. Acesso em: 07 abr. 2020.

GORBALENYA, A. E. et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses a statement of the Coronavirus Study Group. bioRxiv, p. 1-15, Doi: https://doi.org/10.1101/2020.02.07.937862, 2020. Disponível em: https://www.biorxiv.org/content/10.1101/2020.02.07.937862v1.full.pdf. Acesso em: 22 abr. 2020.

HEIMBUCH, B.K.; WALLACE, W.H.; KINNEY, K.; LUMLEY, A. E.; WU, C. Y.; WOO, M.-H.; WANDER, J. D. A pandemic influenza preparedness study: Use of energetic methods to decontaminate filtering facepiece respirators contaminated with H1N1 aerosols and droplets. American Journal of Infection Control, v. 39, n. 1, p. e1-e9, DOI: https://doi.org/10.1016/j.ajic.2010.07.004, 2011. Disponível em: https://apps.dtic.mil/sti/pdfs/ADA560922.pdf. Acesso em: 22 abr. 2020.

JENSEN, M. M. Inactivation of airborne viruses by ultraviolet irradiation. Applied Microbiology, v. 12, n. 5, p. 418-420, 1964. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1058147/pdf/applmicro00355-0030.pdf. Acesso em: 07 abr. 2020.

KOWALSKI, W. Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. Berlin: Springer, 2009.

LIAO, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature Medicine, v. 26, p. 842-844, DOI: 10.1038/s41591-020-0901-9, 2020. Disponível em: https://www.nature.com/articles/s41591-020-0901-9.pdf. Acesso em: 12 jan. 2020.

LIMA, D. L. F.; DIAS, A. A.; RABELO, R. S.; CRUZ, I. D.; COSTA, S. C.; NIGRI, F. M. N.; NERI, J. R.COVID-19 no estado do Ceará, Brasil: comportamentos e crenças na chegada da pandemia. Ciência & Saúde Coletiva, v. 25, n. 5, p. 1575-1586, DOI: 10.1590/1413-81232020255.07192020, 2020. Disponível em: https://www.scielo.br/j/csc/a/BtsPz7tPKSDfhTRKMzFCYCR/?format=pdf&lang=pt. Acesso em: 12 jan. 2020.

LIN, C.-Y.; LI, C.-S. Control effectiveness of ultraviolet germicidal irradiation on bioaerosols. Aerosol Science and Technology, v. 36, n. 4, p. 474-478, 2002. DOI: 10.1080/027868202753571296. Disponível em: https://www.tandfonline.com/doi/pdf/10.1080/027868202753571296. Acesso em: 12 jan. 2020.

LINDSLEY, W. G.; MARTIN JR., S. B.; THEWLIS, R. E.; SARKISIAN, K.; NWOKO, J. O.; MEAD, K. R.; NOTI, J. D. Effects of ultraviolet germicidal irradiation (uvgi) on n95 respirator filtration performance and structural integrity. Journal of Occupational and Environmental Hygiene, v. 12, n. 8, p. 509-517, 2015. DOI: https://doi.org/10.1080/15459624.2015.1018518. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699414/pdf/UOEH_12_1018518.pdf. Acesso em: 12 abr. 2020.

LORE, M. B.; HEIMBUCH, B. K.; BROWN, T. L.; WANDER, J. D.; HINRICHS, S. H. Effectiveness of Three Decontamination Treatments against Influenza Virus Applied to Filtering Facepiece Respirators. The Annals of Occupational Hygiene, v. 56, n. 1, p. 92-101, 2012. DOI: https://doi.org/10.1093/annhyg/mer054. Disponível em: http://www.abeclin.org.br/uploads/arquivos/arquivo-68405.pdf. Acesso em: 12 abr. 2020.

LOWE, J. J. et al. N95 filtering facemask respirator ultraviolet germicidal irridation (UVGI) process for decontamination and reuse. Omaha (NE): Nebraska Medicine, 2020. Disponível em: https://www.nebraskamed.com/sites/default/files/documents/covid-19/n-95-decon-process.pdf. Acesso em: 12 abr. 2020.

MARCONI, M. A.; LAKATOS, E. M. Metodologia do trabalho científico. 8. ed. São Paulo: Atlas, 2018.

MILLS, D.; HARNISH, D. A.; LAWRENCE, C.; SANDOVAL-POWERS, M.; HEIMBUCH, B. K. Ultraviolet germicidal irradiation of influenza-contaminated N95 filtering facepiece respirators. American Journal of Infection Control, v. 46, n. 7, p.e49-e55,

DOI: 10.1016/j.ajic.2018.02.018. Disponível em: https://www.ajicjournal.org/article/S0196-6553(18)30140-8/fulltext. Acesso em: 12 abr. 2020.

N95DECON. A scientific consortium for data-driven study of N95 filtering facepiece respirator decontamination. [Estados Unidos]: N95DECON Incorporation, 2020. Disponível em: https://www.n95decon.org. Acesso em 21 abr. 2020.

OSRAM. Light is pure PURITEC® HNS® UV-C lamps: efficient purification of air, water and surfaces. Munich (Germany), [2020]. Disponível em: https://dammedia.osram.info/media/resource/hires/osram-dam-121389/PURITEC%20HNS%20Brochure%20(EN).pdf. Acesso em: 15 abr. 2020.

RABENAU, H. F.; CINATL, J.; MORGENSTERN, B.; BAUER, G.; PREISER, W.; DOERR, H. W. Stability and inactivation of SARS coronavirus. Medical Microbiology And Immunology, v. 194, n. 1-2, p. 1-6, 2005. DOI: 10.1007/s00430-004-0219-0. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086689/pdf/430_2004_Article_219.pdf. Acesso em: 13 abr. 2020.

RACHE, B.; ROCHA, R.; NUNES, L.; SPINOLA, P.; MALIK, A. M.; MASSUDA, A. Necessidades de Infraestrutura do SUS em Preparo à COVID-19: leitos de UTI, respiradores e ocupação hospitalar. São Paulo: Instituto de Estudos para Políticas de Saúde (IEPS), 2020. (Nota Técnica, n. 3). Disponível em: https://ieps.org.br/wp-content/uploads/2020/04/IEPS-NT3.pdf. Acesso em: 13 abr. 2020.

RADONOVICH, L.J.; CHENG, B.V.; SHENAL, M.; HODGSON; B.S.; BENDER, B. S. Respirator tolerance in health care workers. JAMA: The Journal of the American Medical Association, v. 301, n. 1, p. 36-38, 2009. DOI: 10.1001/jama.2008.894. Disponível em: https://jamanetwork.com/journals/jama/fullarticle/183158. Acesso em: 11 abr. 2020.

RANNEY, M. L.; RIFFETH, V.; JHA, A. K. Critical supply shortages: the need for ventilators and personal protective equipment during the covid-19 pandemic. The New England Journal Of Medicine, v. 382, n. 18, p. e41(1)-e41(3), 2020. doi: 10.1056/NEJMp2006141. Disponível em: https://www.nejm.org/doi/pdf/10.1056/NEJMp2006141?articleTools=true. Acesso em: 11 abr. 2020.

REBMANN, T.; CARRICO, R.; WANG, J. Physiologic and other effects and compliance with long-term respirator use among medical intensive care unit nurses. American Journal of Infection Control, v. 41, n 12, p. 1218-1223, 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S0196655313005920. Acesso em: 12 abr. 2020.

RENGASAMY, S.; EIMER, B.; SHAFFER, R. E. Simple respiratory protection: evaluation of the filtration performance of cloth masks and common fabric materials against 20-1000 nm size particles. The Annals of Occupational Hygiene, v. 54, n. 7, p.789-798, 2010. DOI: https://doi.org/10.1093/annhyg/meq044. Disponível em: https://academic.oup.com/annweh/article/54/7/789/202744. Acesso em: 12 abr. 2020.

ROBACK, J.; GUARNER, J. Convalescent plasma to treat covid-19: possibilities and challenges. JAMA: The Journal of the American Medical Association, v. 323, n. 16, p. 1561-1562, 2020. Doi:10.1001/jama.2020.4940. Disponível em: https://jamanetwork.com/journals/jama/fullarticle/2763982. Acesso em: 12 abr. 2020.

ROSSI, M. C. A. Desinfecção por ação fotônica de um recurso fisioterápico em Unidade de Terapia Intensiva. 2020. 43 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento – Biotecnologia Médica) - Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, 2020. Disponível em: https://repositorio.unesp.br/bitstream/handle/11449/192089/rossi_mca_me_bot.pdf?sequence=3&isAllowed=y. Acesso em: 12 abr. 2020.

SIEGEL, J. D.; RHINEHART, E.; JACKSON, M.; CHIARELLO, L. 2007 guideline for isolation precautions: preventing transmission of infectious agents in health care settings. American Journal Infection Control, v. 35, n. 10, suppl. 2, p. S65– S164, 2007. DOI: 10.1016/j.ajic.2007.10.007. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7119119/pdf/main.pdf>. Acesso em: 12 abr. 2020.

SKORZEWSKA, N. A clinician’s view from the frontline: UV light and other strategies to reduce aerosol transmission of COVID-19 and protect health workers. Global Biosecurity, v. 1, n. 3, 2020. DOI: http://doi.org/10.31646/gbio.60. Disponível em: https://jglobalbiosecurity.com/articles/10.31646/gbio.60/. Acesso em: 12 abr. 2020.

SUMMER, W. Ultraviolet and infrared engineering. New York: Inter-science Publishers, 1962. p. 202–203.

TSENG, C.-C.; LI, C.-S. Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. Journal of Occupational and Environmental Hygiene, v. 4, n. 6, p. 400- 405, 2007. DOI: 10.1080/15459620701329012. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196698/pdf/UOEH_4_232797.pdf. Acesso em: 12 abr. 2020.

UNITED STATES PATENT. Donald A. Kubik, Charles I. Davis. Melt-blown fibrous electrets. US4215682A, 6 feb. 1978, 5 aug. 1980. Disponível em: https://patentimages.storage.googleapis.com/95/9c/b7/da42d9c1288bb3/US4215682.pdf. Acesso em: 11 abr. 2020.

VAN DOREMALEN, N. et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. The New England J ournal of Medicine, v. 382, p.1564-1567, 2020. DOI: 10.1056/NEJMc2004973. Disponível em: https://www.nejm.org/doi/full/10.1056/nejmc2004973. Acesso em: 19 abr. 2020.

VISCUSI, D. J.; BERGMAN, M. S.; EIMER, B. C.; SHAFFER, R. E. Evaluation of five decontamination methods for filtering facepiece respirators. Annals of Occupational Hygiene, n. 53, v. 8, p. 815-827, 2009. DOI: 10.1093/annhyg/mep070. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781738/. Acesso em: 23 abr. 2020.

VISCUSI D. J.; BERGMAN, M. S.; NOVAK, D. A.; FAULKNER, K. A.; PALMIERO, A.; POWELL, J.; SHAFFER, R. E. Impact of three biological decontamination methods on filtering facepiece respirator fit, odor, comfort, and donning ease. Journal of Occupational and Environmental Hygiene, v. 8, n. 7, p. 426-436, 2011. DOI: 10.1080/15459624.2011.585927. Disponível em: https://www.tandfonline.com/doi/full/10.1080/15459624.2011.585927. Acesso em: 19 abr. 2020.

VISCUSI, D. J.; KING, W. P.; SHAFFER, R. E. Effect of decontamination on the filtration efficiency of two filtering facepiece respirator models. Journal of the International Society for Respiratory Protection, v. 24, n. 3-4, p. 93-107, 2007. Disponível em: https://www.isrp.com/the-isrp-journal/journal-public-abstracts/1138-vol-24-no-3-and-no-4-2007-pp-93-107-viscusi-open-access/file. Acesso em: 23 abr. 2020.

VUMA, C. D. et al. The Effect on fit of multiple consecutive donning and doffing of N95 filtering facepiece respirators. Annals of Work Exposures and Health, v. 63, n. 8, p. 930-936, 2019. DOI: 10.1093/annweh/wxz060. Disponível em: https://academic.oup.com/annweh/article/63/8/930/5554877. Acesso: em 11 dez. 2020.

WANG, X.; ZHANG, X.; HE, J. Challenges to the system of reserve medical supplies for public health emergencies: reflections on the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in China. BioScience Trends, v. 14, n. 1, p. 3-8, 2020. DOI:10.5582/bst.2020.01043. Disponível em: Acesso em: 23 abr. 2020.

WANG, W.; XU, Y.; GAO, R.; LU, R.; HAN, K.; WU,G.; TAN, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA: The Journal of the American Medical Association, v. 323, n. 18, 2020. p. 1843-1844. DOI: 10.1001/jama.2020.3786. Disponível em: https://jamanetwork.com/journals/jama/fullarticle/2762997. Acesso em: 19 abr. 2020.

WEAVER, D. T. et al. UV Sterilization of personal protective equipment with idle laboratory biosafety cabinets during the Covid-19 pandemic. Plos One, jul. 2021. DOI: https://doi.org/10.1371/journal.pone.0241734. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241734. Acesso em: 23 abr. 2020.

WORLD HEALTH ORGANIZATION - WHO. Coronavirus disease (COVID-19) Technical guidance: essential resource planning. Genebra (Suíça), 2020a. Disponível em: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/covid-19-critical-items. Acesso em: 12 abr. 2020.

WORLD HEALTH ORGANIZATION - WHO. Covid-19 strategy update. Genebra (Suíça), 2020b. Disponível em: https://www.who.int/publications/m/item/covid-19-strategy-update. Acesso em: 12 abr. 2020.

WORLD HEALTH ORGANIZATION - WHO. Strengthening the health system response to COVID-19: policy brief: recommendations for the WHO European Region (1 april 2020). Genebra (Suíça), 2020c. Disponível em:

https://apps.who.int/iris/bitstream/handle/10665/333072/WHO-EURO-2020-806-40541-54465-eng.pdf?sequence=1&isAllowed=y. Acesso em: 12 abr. 2020.

WYCKOFF, R. W. G. The killing of colon bacilli by ultraviolet light. Journal General Physiology, v. 15, n. 3, p. 351–361, 1931. DOI: https://doi.org/10.1085/jgp.15.3.351. Disponível em: https://rupress.org/jgp/article-pdf/15/3/351/1234528/351.pdf. Acesso em: 12 abr. 2020.

Creative Commons License

Este trabalho está licensiado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Array