Resumo
Apresenta-se um modelo matemático baseado na hipótese de que o crescimento de tumores tem sua origem nas células-tronco cancerígenas (CTCs). No entanto, o próprio conceito de célula-tronco cancerígena (CTC) tem sido alvo de controvérsias na literatura e uma das questões abertas à discussão se refere à proporção de CTCs em um tumor. O modelo apresentado, baseado no comportamento do sistema hematopoiético, tem uma estrutura hierárquica composta de dois compartimentos: o de células-tronco (CT) e o de células diferenciadas ou progenitoras (CPs). Admite-se que um tumor seja constituído por uma população de células que se tornaram anormais por adquirirem mutações durante o processo de mitose. Para o modelo matemático proposto, mostramos que as CTCs podem ser células anormais que residem no compartimento de células-tronco, mas também podem ser CPs que, através de mutação adquirida na mitose, se tornam capazes de se autorrenovarem. Mostramos, em concordância com resultados experimentais, que a proporção de CTCs em um tumor pode variar de acordo com a mutação que o originou. Nosso modelo sugere que os tumores mais agressivos são aqueles em que a proporção de CTCs é grande.
Palavras-chave: Modelo matemático. Célula-tronco cancerígena. Tumor.
Mathematical analysis of a model for the cancer stem cells growing in tumors
We present a mathematical model based on the hypothesis that the growing of a tumor is driven by the cancer stem cells (CSC). However, the concept of CSC and the proportion of this subpopulation in a tumor remain as topics of considerable controversy. Our model, based on the known behavior of the hematopoietic system, has a hierarchical structure with only two compartments: one for the stem-cells (SC) and another for the differentiated or progenitor cells (PC). We admit that a tumor is constituted by a population of abnormal cells, that is, cells that, during mitosis, acquired a mutation. Our mathematical model suggests that a CSC can either be a cell residing in the stem cell compartment or a differentiated cell that, due to the mutation, became able of self-renewal. In accordance to some experimental results, our model shows that any proportion of CSC is possible in a tumor. However, the bigger this proportion is, the more aggressive is the tumor.
Keywords: Mathematical model. Cancer stem cell. Tumor.
Referências
ASHKENAZI, R.; GENTRY, S. N.; JACKSON, T. L. Pathways to tumorigenesis: modeling mutation acquisition in stem cells and their progeny. Neoplasia, New York, v. 10, p. 1170-1182. nov. 2008.
CLARKE, M. F. Neurobiology: at the root of brain cancer. Nature, Reino Unido, v. 432, p. 281-282, nov. 2004.
CLARKE, M. F.; BECKER, M.W. Cancer: o lado maligno das células-tronco. Scientific American Brasil, São Paulo, v. 51, p. 39-46, 2006.
DOMINGUES, J. S. Modelagem matemática e computacional do efeito do surgimento da angiogênese em tumores e sua conexão com as células-tronco. 2010. 81f. Dissertação (Mestrado) - Modelagem Matemática e Computacional, CEFET-MG, Belo Horizonte, 2010.
JOHNSTON, M. D et al. On the proportion of cancer stem cells in a tumour. Journal of Theoretical Biology, Oxford, v. 266, p. 708-711, ago. 2010.
HUNTLY, B. J. P.; GILILAND, D. G. Summing up cancer stem cells. Nature, Reino Unido, v. 435, p. 1169-1170, jun. 2005.
KELLY, P. N. et al. Tumor growth need to not be driven by rare cancer stem cells. Science, Rockville Pike, v. 317, p. 337-340, jul. 2007.
LAPIDOT, Tsvee et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, Reino Unido, v. 367, p. 645-648, fev. 1994.
MICHOR, F. et al. Dynamics of chronic myeloid leukaemia. Nature, Reino Unido, v. 435, p. 1267-1270, jun. 2005.
MORRISON, S. J.; KIMBLE, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, Reino Unido, v. 441, p. 1068-1074, jun. 2006.
O’BRIEN, C. A. et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, Reino Unido, v. 445, p. 106-110, jan. 2007.
POLYACK, K.; HAHN, W. C. Roots and stems: stem cells in cancer. Nature Medicine, Rockville Pike, v. 12, p. 296-300, mar. 2006.
QUINTANA, E. et al. Efficient tumor formation by single human melanoma cells. Nature, Reino Unido, v. 456, p. 593-598, dez. 2008.
REYA, T. et al. Stem cells, cancer, and cancer stem cells. Nature, Reino Unido, v. 414, p. 105-111, nov. 2001.
RICCI-VITIANI, L. et al. Identification of human brain tumour initiating cells. Nature, Reino Unido, v. 445, p. 111-115, jan. 2007.
ROSEN, J. M.; JORDAN, C. T. The increasing complexity of the cancer stem cell paradigm. Science, Rockville Pike, v. 324, p. 1670-1673, jun. 2009.
SPENCER, S. L. et al. An ordinary differential equation model for the multistep transformation to cancer. Journal of Theoretical Biology, EUA, v. 231, p. 515-524, jan. 2004.
TOMLINSON, I. P.; BODMER, W. F. Failure of programmed cell death and differentiation as causes of tumors: some simple mathematical models. Proceedings of the National Academy of Science USA, EUA, v. 92, p. 11130-11134, nov. 1995.
WU, X. Z. Origin of cancer stem cells: the role of self-renewal and differentiation. Annals of Surgical Oncology, New York, v. 15, p. 407-414, nov. 2008.