Abstract
O presente trabalho apresenta a implementação em hardware para cálculo das funções trigono-métricas seno e cosseno por meio de rotação vetorial utilizando o algoritmo CORDIC. O código foi sintetizado no FPGA DE10-Lite da Terasic Inc. com as ferramentas de desenvolvimento da Altera/Intel para família MAX 10. Com o objetivo de avaliar o desempenho da implementação em hardware, é realizado uma comparação com o algoritmo desenvolvido em Python e seus resultados são apresentados. Tais resultados demonstram a precisão numérica da arquitetura proposta para a implementação do CORDIC no FPGA versus Python, não considerando o tempo de execução.
Palavras-chave: CORDIC. Verilog. FPGA.
Implentation of Cordic algorithm for sine and cosine calculation in FPGA
Abstract
The present work presents the hardware implementation for calculating the trigonometric functions sine and cosine by means of vector rotation using the CORDIC algorithm. The code was synthetized in the DE10-Lite Board from Terasic Inc. with Altera/Intel development tools for MAX Family 10. In order to evaluate the performance of the hardware implementation, a comparison with the algorithm developed in Python is performed and its results are presented. These results demonstrate the numerical precision of the proposed architecture for the implementation of CORDIC in FPGA versus Python, not considering the execution time.
Keywords: CORDIC. Verilog. FPGA. Python.
References
ANDRAKA, R. A survey of cordic algorithms for fpga based computers. p. 191–200, 1998.
BISWAL, P.; BANERJEE, S. Implementation of katsevich algorithm for helical cone-beam computed tomography using cordic. In: 2010 International Conference on Systems in Medicine and Biology. [S.l.: s.n.], 2010. p. 313–317.
De10-lite user manual. hhttps://www.intel.com/content/dam/altera-www/global/en US/portal/dsn/42/doc-us-dsnbk-42-2912030810549-de10-lite-user-manual.pdfi. Accessed: 2019-07-17.
HAUCK, A. D. S. Reconfigurable computing the theory and practice of FPGA-based
computation/edited. [S.l.]: Elsevier Inc, 2008.
KHAN, S. A. Digital design of signal processing systems : a practical approach. 1. ed. [S.l.]: John
Wiley & Sons, 2011. 579 p.
MASRAM, B. Y.; KARULE, P. T. High performance analysis of a cordic architectures based on fpga:A comparative approach. In: 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies. [S.l.: s.n.], 2014. p. 569–574.
MEHER, P. K. et al. 50 Years of CORDIC: Algorithms, Architectures and Applications. IEEE
Transactions on Circuits & Systems-I: Regular Papers, v. 56, p. 1893–1907, 2009.
MULLER, J.-M. Elementary Functions: Algorithms and Implementation. 2. ed. [S.l.]: Boston:
Birkhauser, 1961. 134 p. ISBN 9780817643720. ¨
SWARTZLANDER JR., E. E. Computer Arithmetic. 1 (2 ed.). [S.l.]: Los Alamitos: IEEE Computer
Society Press, 1990.
TANG, A. et al. Cordic-based fft real-time processing design and fpga implementation. In: 2016 IEEE 12th International Colloquium on Signal Processing Its Applications (CSPA). [S.l.: s.n.], 2016. p.233–236.
VOLDER, J. E. The CORDIC Computing Technique. San Francisco, California, USA: National Joint
Computer Committee (NJCC), v. 1, p. 257–261, 1959.
VOLDER, J. E. The CORDIC Trigonometric Computing Technique. IRE Transactions on Electronic
Computers, v. 8, p. 330–334, 1959.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2020 Array