Resumen
A utilização de biomassas residuais de plantas utilizadas na agroindústria tem sido crescente. O bagaço de cana-de-açúcar se destaca nesse cenário, já que a cultura da planta é muito difundida, gerando grandes quantidades desse resíduo. Neste contexto é necessário entender as características dessa biomassa para poder otimizar a geração de energia. Diante do exposto, o presente trabalho teve como objetivo caracterizar e avaliar o potencial energético da biomassa de cana-de-açúcar por meio da análise dos principais parâmetros que influenciam esse processo. Foram realizadas análises de poder calorífico superior, análises químicas imediatas, infravermelho e análise elementar, com o intuito de avaliar o potencial energético desse material. Observou-se bom nível de poder calorífico superior, 4309,50 kcal kg-1, além de teores baixos de cinzas, 0,95%, fatores que podem explicar a grande utilização da biomassa de bagaço de cana-de-açúcar para a geração de energia direta, principalmente na indústria.
Palavras-chave: Resíduos. Cana-de-açúcar. Fonte de energia.
Characterization of sugar cane bagasse biomass with energy views
Abstract
The use of residual biomass from plants used in agribusiness has been increasing. The sugarcane bagasse stands out in this scenario, since the plant's culture is very widespread, generating large amounts of this residue. In this context, it is necessary to understand the characteristics of this biomass in order to optimize the energy generation. With the above, the present study had as objective characterize and evaluate energy potential of sugarcane biomass through the analysis of the main parameters that influence the process. Analyzes of superior calorific power, immediate chemical analyzes, infrared and elementary analysis were carried out, in order to evaluate the energetic potential of this material. A good level of higher calorific value was observed, 4309.50 kcal kg-1, in addition to low ash content, 0.95%, factors that may explain the great use of sugarcane bagasse for direct energy generation, mainly in industry.
Keywords: Waste. Sugarcane. Energy source.
Citas
ACQUAH, G. E. et al. Chemometric modeling of thermogravimetric data for the compositional analysis of forest biomass. PLoS ONE, v. 12, p. 0172999, 2017. https://doi.org/10.1371/journal.pone.0172999. Acesso em: 07 jun. 2020.
ARPIA, A. A. et al. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review. Chemical Engineering Journal, v. 403, p. 126233, 2021. https://doi.org/10.1016/j.cej.2020.126233. Acesso em: 25 fev. 2021.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS-ABNT. NBR 8112: análise imediata. Rio de Janeiro, 1986.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS-ABNT. NBR 8633: carvão vegetal – determinação do poder calorífico. Rio de Janeiro, 1984.
BERNAL, C. et al. Influência de alguns parâmetros experimentais nos resultados de análises calorimétricas diferenciais - DSC. Química Nova, São Paulo, v. 25, p. 849-855, 2002.
BILATTO, S. et al. Lignocellulose nanocrystals from sugarcane straw. Industrial Crops and Products, v. 157, p. 112938, 2020. https://doi.org/10.1016/j.indcrop.2020.112938. Acesso em: 25 fev. 2021.
CARRIER, M. et al. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass and Bioenergy, v. 35, p. 298-307, 2011. https://doi.org/10.1016/j.biombioe.2010.08.067. Acesso em: 10 mai. 2020.
CARVALHO, D. J. et al. Assessment of the self-sustained energy generation of an integrated first and second generation ethanol production from sugarcane through the characterization of the hydrolysis process residues. Energy Conversion and Management, v. 203, e0112267, 2020. https://doi.org/10.1016/j.enconman.2019.112267. Acesso em: 27 fev. 2021.
COELHO, R. D. et al. Effect of water stress on renewable energy from sugarcane biomass. Renewable and Sustainable Energy Reviews, v. 103, p. 399-407, 2019. https://doi.org/10.1016/j.rser.2018.12.025. Acesso em: 10 set. 2020.
CORREIA, M. A. C. et al. Características e potencial energético do bagaço da cana-de-açúcar armazenado sem cobertura por um período prolongado. Revista em Agronegócio e Meio Ambiente, Maringá, v. 13, n. 1, p. 173-187, 2020.
CORTEZ, L. A. B.; BALDASSIN, R.; DE ALMEIDA, E. Chapter 7 - energy from sugarcane. In: SANTOS, F. et al (Orgs.). Sugarcane biorefinery, technology and perspectives. [s.l.]: Academic Press, 2020, p. 117-139. Disponível em: http://www.sciencedirect.com/science/article/pii/B978012814236300007X. Acesso em: 10 out. 2020.
DANTAS, G. A.; LEGEY, L. F. L.; MAZZONE, A. Energy from sugarcane bagasse in Brazil: an assessment of the productivity and cost of different technological routes. Renewable and Sustainable Energy Reviews, v. 21, p. 356-364, 2013. https://doi.org/10.1016/j.rser.2012.11.080. Acesso em: 10 set. 2020.
DA SILVA, R. N.; DE LIMA, F. E. Estudo do impacto do teor de umidade do bagaço de cana-de-açúcar em sistemas de cogeração. Revista Geama, Recife, v. 6, n. 2, p. 25-33, 2020.
DE SOUZA, Z. J. Bioelectricity of sugarcane: a case study from Brazil and perspectives. In: Sugarcane Biorefinery, Technology and Perspectives. [s.l.]: Elsevier, 2020, p. 255–279. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/B978012814236300013. Acesso em: 3 mar. 2021.
DEVI, G. K. et al. 12 - Effective utilization of sugarcane trash for energy production. In: KUMAR, R. P. et al (Orgs.). Refining biomass residues for sustainable energy and bioproducts. [s.l.]: Academic Press, 2020, p. 259-273. Disponível em: http://www.sciencedirect.com/science/article/pii/B9780128189962000120. Acesso em: 10 out. 2020.
DI FRAIA, S. et al. Energy potential of residual biomass from agro-industry in a Mediterranean region of southern Italy (Campania). Journal of Cleaner Production, v. 277, p. 124085, 2020. https://doi.org/10.1016/j.jclepro.2020.124085. Acesso em: 25 fev. 2021.
DIRBEBA, M. J. et al. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process: fate of ash and ash-forming elements. Bioresource Technology, v. 234, p. 188-197, 2017. https://doi.org/10.1016/j.biortech.2017.03.021. Acesso em: 09 ago. 2020.
FARZAD, S. et al. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry? Biotechnology for Biofuels, v. 10, n. 1, p. 87, 2017. 17. 10:87. https://doi.org/10.1186/s13068-017-0761-9. Acesso em: 09 jun. 2020.
FERREIRA, I. T. et al. Estimativa do potencial energético de resíduos celulósicos de fabricação de papel através de análise imediata. Revista Brasileira de Energias Renováveis, Curitiba, v. 3, n. 4, 2014.
FERREIRA, L. R. A. et al. Review of the energy potential of the residual biomass for the distributed generation in Brazil. Renewable and Sustainable Energy Reviews, v. 94, p. 440-455, 2018. https://doi.org/10.1016/j.rser.2018.06.034. Acesso em: 09 jul. 2020.
GOUVEA, A. F. G. et al. Estudo da adição da lignina kraft nas propriedades mecânicas dos briquetes de resíduos da indústria moveleira. Ciência Florestal, Santa Maria, v. 27, n. 3, p. 1029-1036, 2017.
GUILHERME, A. de A. et al. Ethanol production from sugarcane bagasse: use of different fermentation strategies to enhance an environmental-friendly process. Journal of Environmental Management, v. 234, p. 44–51, 2019. https://doi.org/10.1016/j.jenvman.2018.12.102. Acesso em: 10 jul. 2020.
HOLLER, F. J. et al. Princípios de análise instrumental. 6 ed. Porto Alegre: Bookman, 2009.
HILOIDHARI, M. et al. Bioelectricity from sugarcane bagasse co-generation in India: an assessment of resource potential, policies and market mobilization opportunities for the case of Uttar Pradesh. Journal of Cleaner Production, v. 182, p. 1012–1023, 2018. https://doi.org/10.1016/j.jclepro.2018.02.087. Acesso em: 10 jul. 2020
GROTTO, C. G. L. et al. Energy potential of biomass from two types of genetically improved rice husks in Brazil: A theoretical-experimental study. Biomass and Bioenergy, v. 142, p. 105816, 2020. https://doi.org/10.1016/j.biombioe.2020.105816. Acesso em: 10 ago. 2020
MANYÀ, J. J.; ARAUZO, J. An alternative kinetic approach to describe the isothermal pyrolysis of micro-particles of sugar cane bagasse. Chemical Engineering Journal, v. 139, p.549-561, jun. 2008. https://doi.org/10.1016/j.cej.2007.09.005. Acesso em: 14 jun. 2020.
MOREIRA, A. A. et al. Treatment of sugarcane bagasse for the immobilization of soybean β-glucosidase and application in soymilk isoflavones. Brazilian Journal of Food Technology, Campinas, v. 2, 2019.
PARIKH, J.; CHANNIWALA, S. A.; GHOSAL, G. K. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, v. 84, n. 5, p. 487-494, 2005. https://doi.org/10.1016/j.fuel.2004.10.010. Acesso em: 10 out. 2020.
PONTE, M. R. et al. Blendas de bagaço de cana-de-açúcar, podas de mangueira e cajueiro: caracterização das propriedades e investigação de seus potenciais energéticos. Revista Matéria, Rio de Janeiro, v. 24, n. 2, 2019.
PRASAD, S. et al. Biofuels: a clean technology for environment management. In: SHAH, S.; VENKATRAMANAN, V.; PRASAD, R. (Orgs.). Sustainable green technologies for environmental management. Singapore: Springer Singapore, 2019, p. 219–240. Disponível em: http://link.springer.com/10.1007/978-981-13-2772-8_11. Acesso em: 10 out. 2020.
RAMBO, M. K. D. et al. Estudo de análise termogravimétrica de diferentes biomassas lignocelulósicas utilizando a análise por componentes principais. Ciência e Natura, Santa Maria, v. 37, n. 3, p. 862-868, 2015.
RAMOS E PAULA, L. E. de et al. Characterization of residues from plant biomass for use in energy generation. Cerne, Lavras, v. 17, n. 2, p. 237-246, 2011.
REIN, P. Cane sugar engineering. Berlim: Verlag, 768 p, 2007.
RÜHL, C. et al. Economic development and the demand for energy: a historical perspective on the next 20 years. Energy Policy, v. 50, p. 109-116, 2012. https://doi.org/10.1016/j.enpol.2012.07.039. Acesso em: 05 mar. 2020.
STANISLAV, V. et al. An overview of the chemical composition of biomass. Fuel, v. 89, p. 913-933, 2010. https://doi.org/10.1016/j.fuel.2009.10.022. Acesso em: 01 jul. 2020.
TAPPI – TECHNICAL ASSOCIATION OF THE PULP AND PAPER INDUSTRY. Solvent extractives of wood and pulp. TAPPI test methods. Atlanta:TAPPI Press, 2007.
TEMPLETON, D.; EHRMAN, T. Determination of acid-insoluble lignin in biomass. laboratory analytical procedure (LAP) n° 003. National Renewable Energy Laboratory – NREL, 1995a.
TEMPLETON, D.; EHRMAN, T. Determination of acid-soluble lignin in biomass. laboratory analytical procesure (LAP) n° 004. National Renewable Energy Laboratory – NREL, 1995b.
TARLEY, C. R. T.; ARRUDA, M. A. Z. Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents. Chemosphere, v. 54, n. 7, p. 987-995, 2004. https://doi.org/10.1016/j.chemosphere.2003.09.001. Acesso em: 01 jul. 2020.
VAMVUKA, D.; KAKARAS, E. Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Processing Technology, v. 92, p. 570-581, 2011. https://doi.org/10.1016/j.fuproc.2010.11.013. Acesso em: 01 jul.. 2020.
VAZ JÚNIOR, S. Biomassa para Química Verde. 1. ed. Brasília: Embrapa Agroenergia, 2013.
VIEIRA, S. et al. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresource Technology, v. 299, p. 122635, 2020. https://doi.org/10.1016/j.biortech.2019.122635. Acesso em: 26 fev. 2021.
Esta obra está bajo licencia Creative Commons Attribution-NonCommercial 4.0 International License.
Derechos de autor 2021 Array