Bamboo ashes as an eco-friendly alternative to cement - a systematic review
PDF (Português (Brasil))

Cómo citar

Carvalho, Y. M., & Velasco, L. F. (2021). Bamboo ashes as an eco-friendly alternative to cement - a systematic review. ForScience, 9(2), e00889. https://doi.org/10.29069/forscience.2021v9n2.e889

Resumen

Cement production impacts the environment from raw materials extraction to its industrialized production. Implementing supplementary cementitious materials (SCM) to replace cement is an economical and sustainable practice. Agricultural wastes, for example, represent a new source of SCM studied over the last decades, mainly due to its high generation around the world. Among the published review papers about agro-waste in civil construction, bamboo ashes (BA) appear secondary in large-scale studies. Thus, this work aimed to evaluate BA potential use in the construction industry as cement replacement by identifying their behavior in cementitious compounds and discovering the research gaps about this topic. We overviewed the published literature about concrete made with BA, synthesizing data about BA chemical composition and mechanical and physical characteristics of cementitious materials made with these ashes. We identified a preference for bamboo leaves ashes as SCM, potentially due to its high silica amount. However, other biological and environmental parameters that alter the bamboo chemical composition were not discussed in the papers. Concerning compressive strength, 90% of the studies with BA reported cementitious materials with a strength activity index acceptable for use. This review also identified an optimal percentage of cement replacement with BA ranging from 8% to 12% in concrete specimens. Concrete and mortar with BA also showed a lower density than the reference samples made only with cement. We concluded that BA are promising alternatives to replace cement since they provide desirable mechanical and physical characteristics to concrete and meet sustainability requirements. Besides that, we raised some topics that may guide future researches: (1) the natural and artificial parameters that affect BA composition; (2) BA chemical and physical behavior under microscopical conditions in cementitious composites; and (3) the economic advantages associated with replacing cement with BA.

Keywords: Cement substitutes. Addition. Artificial pozzolan. Sustainability. Supplementary cementitious materials.


Cinzas de bambu como alternativa eco-amigável ao cimento - uma revisão sistemática

Resumo

A produção de cimento impacta o meio ambiente desde a extração de matérias-primas até sua produção industrializada, o que reforça a demanda por materiais cimentícios suplementares (MCS) para substituir, mesmo que parcialmente, o uso do cimento. Os resíduos agrícolas, por exemplo, são um bom exemplo de MCS estudado nas últimas décadas, principalmente devido à sua alta geração em todo o mundo. Dentre os artigos de revisão publicados sobre o uso de resíduos agrícolas na construção civil, as cinzas de bambu figuram apenas como subtópico em estudos maiores. Logo, esse trabalho objetivou avaliar o potencial do uso de cinzas de bambu na indústria da construção civil como substituinte parcial ao cimento identificando seu comportamento em compostos cimentícios e sugerindo temas para pesquisas futuras. Esta revisão sistemática fornece uma visão geral da literatura publicada sobre argamassas e concretos feito com cinzas de bambu, sintetizando dados sobre a composição química dessas cinzas e as características mecânicas e físicas dos materiais cimentícios feitos com elas. Identificou-se uma preferência pelo uso de cinzas de bambu advindas da calcinação das folhas dessa planta, potencialmente devido ao seu alto teor de sílica. No entanto, existem parâmetros biológicos e ambientais que alteram a composição química do bambu e que não são discutidos pelos artigos. Quanto à resistência, 90% dos estudos que empregaram cinzas de bambu reportaram à resistência compressão admissível para uso em construções. Levantou-se, também, que a porcentagem ideal de substituição de cimento por cinzas de bambu varia de 8% a 12% em amostras de concreto. Os materiais cimentícios com cinzas de bambu também apresentaram densidade menor que a das amostras de referência feitas apenas com cimento. Conclui-se pelo estudo que as cinzas de bambu são alternativas promissoras para substituir parcialmente o cimento visto que elas proporcionam boas características mecânicas e físicas ao concreto e atendem a demandas sustentáveis. Além disso, foram levantadas lacunas na literatura que podem guiar futuras pesquisas, quais sejam: (1) os parâmetros naturais e artificiais que afetam a composição química das cinzas de bambu; (2) o comportamento químico e físico de cinzas de bambu em compósitos cimentícios sob condições microscópicas; e (3) as vantagens econômicas associadas a substituir parcialmente cimento por cinzas de bambu.

Palavras-chave: Substitutos do cimento. Adição. Pozolana artificial. Sustentabilidade. Materiais cimentícios suplementares.

https://doi.org/10.29069/forscience.2021v9n2.e889
PDF (Português (Brasil))

Citas

ABOLUWARIN, O. et al. Investigating the effect of bamboo trunk ash blended cement in engineering properties of mortar. International Journal of Science and Research, Raipur, Índia, v. 6, n. 7, p. 2037-2040, 2017. Disponível em: https://doi.org/10.21275/art20175631. Acesso em: 17 aug. 2020.

ABU BAKAR, B. H.; RAMADHANSYAH, P. J.; MEGAT AZMI, M. J. Effect of rice husk ash fineness on the chemical and physical properties of concrete. Magazine of Concrete Research, Londres, Reino Unido, v. 63, n. 5, p. 313-320, 2011. Disponível em: https://doi.org/10.1680/macr.10.00019. Acesso em: 17 aug. 2020.

ADEMOLA, S. A.; BUARI, T. A. Behaviour of bamboo leaf ash blended cement concrete in sulphates environment. IOSR Journal of Engineering, Gurugram, Índia, v. 4, n. 6, p. 01-08, 2014. Disponível em: https://doi.org/10.9790/3021-04610108. Acesso em: 17 aug. 2020.

ALTUN, F.; AKTAŞ, B. Investigation of reinforced concrete beams behavior of steel fiber added lightweight concrete. Construction and Building Materials, Amsterdan, Países Baixos, v. 38, p. 575-581, 2013. Disponível em: https://doi.org/10.1016/j.conbuildmat.2012.09.022. Acesso em: 17 aug. 2020.

AMARAL, M. C. Avaliação dos efeitos da incorporação de resíduo de lama de cal naspropriedades e microestrutura de uma mistura solo-cimento. 2016. 100 p. Tese (Doutorado em Engenharia e Ciência dos Materiais) - Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 2016.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C1709 - 18: standard guide for evaluation of alternative supplementary cementitious materials (ASCM) for use in concrete. West Conshohocken, EUA: ASTM International, 2018.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C618-19. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, EUA: ASTM International, 2019.

AMIN, M. N. et al. Pozzolanic potential and mechanical performance of wheat straw ash incorporated sustainable concrete. Sustainability, Basel, Suíça, v. 11, n. 2, p. 1-20, 2019. Disponível em: https://doi.org/10.3390/su11020519. Acesso em: 17 aug. 2020.

ARUM, C.; IKUMAPAYI, C. M.; ARALEPO, G. O. Ashes of biogenic wastes: pozzolanicity, prospects for use, and effects on some engineering properties of concrete. Materials Sciences and Applications, Wuhan, China, v. 4, n. 9, p. 521-527, 2013. Disponível em: https://doi.org/10.4236/msa.2013.49064. Acesso em: 17 aug. 2020.

ARVANITI, E. C. et al. Physical characterization methods for supplementary cementitious materials. Materials and Structures/Materiaux et Constructions, Lonres, Reino Unido, v. 48, p. 3675-3686, 2015. Disponível em: https://doi.org/10.1617/s11527-014-0430-4. Acesso em: 17 aug. 2020.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12653. Materiais pozolânicos – requisitos. Rio de Janeiro: [s. n.], 2014.

CARVALHO, Y. M. Do velho ao novo: a revisão de literatura como método de fazer ciência. Revista Thema, Pelotas, Rio Grande do Sul, v. 16, n. 4, p. 913-928, 2019. Disponível em: https://doi.org/http://dx.doi.org/10.15536/thema.V16.2019.913-928.1328. Acesso em: 17 aug. 2020.

CHEN, H. et al. An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack. PLoS ONE, São Franciso, EUA, v. 13, n. 1, p. 1-17, 2018. Disponível em: https://doi.org/10.1371/journal.pone.0191370. Acesso em: 17 aug. 2020.

COLLIN, B. et al. Distribution and variability of silicon, copper and zinc in different bamboo species. Plant and Soil, Londres, Reino Unido, v. 351, n. 1-2, p. 377-387, 2012. Disponível em: https://doi.org/10.1007/s11104-011-0974-9. Acesso em: 17 aug. 2020.

CORDEIRO, G. C.; SALES, C. P. Pozzolanic activity of elephant grass ash and its influence on the mechanical properties of concrete. Cement and Concrete Composites, Amsterdan, Países Baixos, v. 55, p. 331-336, 2015. Disponível em: https://doi.org/10.1016/j.cemconcomp.2014.09.019. Acesso em: 17 aug. 2020.

CORDEIRO, G. C.; TOLEDO FILHO, R. D.; FAIRBAIRN, E. M. R. Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, Amsterdan, Países Baixos, v. 23, n. 10, p. 3301-3303, 2009. Disponível em: https://doi.org/10.1016/j.conbuildmat.2009.02.013. Acesso em: 17 aug. 2020.

CROW, J. The concrete conundrum. Chemistry World, Londres, Reino Unido, p. 62-64, 2008.

DAMINELI, B. L.; PILLEGGI, R. G.; JOHN, V. M. Influence of packing and dispersion of particles on the cement content of concretes. Revista IBRACON de Estruturas e Materiais, São Paulo, v. 10, n. 5, p. 998-1024, 2017. Disponível em: https://doi.org/10.1590/s1983-41952017000500004. Acesso em: 17 aug. 2020.

DAMTOFT, J. S. et al. Sustainable development and climate change initiatives. Cement and Concrete Research, Amsterdan, Países Baixos, v. 38, n. 2, p. 115-127, 2008. Disponível em: https://doi.org/10.1016/j.cemconres.2007.09.008. Acesso em: 17 aug. 2020.

DAVID, N. L.; HASSAN, L. K. Physical and mechanical properties of cement mortar using lime and bamboo-ash as partial replacements. Malaysian Journal of Civil Engineering, Johor Bahru, Malásia, v. 30, n. 2, p. 254-268, 2018. Acesso em: 17 aug. 2020.

DHENGARE, S. et al. Fineness effect of sugarcane bagasse ash, rice husk ash, and fly ash on strength of concrete. International Research Journal of Engineering and Technology, Hyderabad, Índia, v. 6, n. 2, p. 121-126, 2019. Acesso em: 17 aug. 2020.

DHINAKARAN, G.; CHANDANA, G. H. Compressive strength and durability of bamboo leaf ash concrete. Jordan Journal of Civil Engineering, Irbid, Jordânia, v. 10, n. 3, p. 279-289, 2016. Disponível em: https://doi.org/10.14525/jjce.10.3.3601. Acesso em: 17 aug. 2020.

DUCHESNE, J. Alternative supplementary cementitious materials for sustainable concrete structures: a review on characterization and properties. Waste and Biomass Valorization, n. 0123456789, 2020. Disponível em: https://doi.org/10.1007/s12649-020-01068-4. Acesso em: 17 aug. 2020.

DWIVEDI, V. N. et al. A new pozzolanic material for cement industry: bamboo leaf ash. International Journal of Physical Sciences, v. 1, n. 3, p. 106-111, 2006.

FRÍAS, M. et al. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cement and Concrete Composites, Amsterdan, Países Baixos, v. 34, n. 9, p. 1019-1023, 2012. Disponível em: https://doi.org/10.1016/j.cemconcomp.2012.05.005. Acesso em: 17 aug. 2020.

HABEEB, G. A.; MAHMUD, H. B. Study on properties of rice husk ash and its use as cement replacement material. Materials Research, v. 13, n. 2, p. 185-190, 2010.

HEIRI, O.; LOTTER, A. F.; LEMCKE, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, v. 25, p. 101-110, 2001.

HELANDER, M. et al. Endophytic fungi and silica content of different bamboo species in giant panda diet. Symbiosis, v. 61, n. 1, p. 13-22, 2013. Disponível em: https://doi.org/10.1007/s13199-013-0253-z. Acesso em: 17 aug. 2020.

HIDALGO-LÓPEZ, O. Bamboo: the gift of the gods. Bogotá, Colombia: The author, 2003.

IKEAGWUANI, C. C. et al. Potential of bamboo stem ash as aupplementary cementitious material in concrete production. International Journal of Engineering Research &Technology, v. 8, n. 08, p. 75-80, 2019.

IKUMAPAYI, C. M. Crystal and microstructure analysis of Pozzolanic properties of bamboo leaf ash and locust beans pod ash blended cement concrete. Journal of Applied Sciences and Environmental Management, v. 20, n. 4, p. 943, 2017. Disponível em: https://doi.org/10.4314/jasem.v20i4.6. Acesso em: 17 aug. 2020.

JAYA, R. P. et al. Properties of mortar containing rice husk ash at different temperature and exposed to aggressive environment. Advanced Materials Research, v. 620, p. 87–93, 2013. https://doi.org/10.4028/www.scientific.net/AMR.620.87. Acesso em: 17 aug. 2020.

KAZA, S. et al. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington: International Bank for Reconstruction and Development/The World Bank, 2018.

KOLAWOLE, J. T.; OLUSOLA, K. O.; ATA, O. Strength of bamboo leaf ash and pulverized burnt clay waste blended cement concrete. IOSR Journal of Mechanical and Civil Engineering Ver. II, v. 12, n. 6, p. 36-42, 2015. Disponível em: https://doi.org/10.9790/1684-12623642. Acesso em: 17 aug. 2020.

LIAN, C.; ZHUGE, Y.; BEECHAM, S. The relationship between porosity and strength for porous concrete. Construction and Building Materials, Amsterdan, Países Baixos, v. 25, n. 11, p. 4294-4298, 2011. Disponível em: https://doi.org/10.1016/j.conbuildmat.2011.05.005. Acesso em: 17 aug. 2020.

LIBRE, N. A. et al. Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials, Amsterdan, Países Baixos, v. 25, n. 5, p. 2458-2464, 2011. Disponível em: https://doi.org/10.1016/j.conbuildmat.2010.11.058. Acesso em: 17 aug. 2020.

LUHAR, S.; CHENG, T. W.; LUHAR, I. Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: a review. Composites Part B: Engineering, Amsterdan, Países Baixos, v. 175, n. March, p. 107076, 2019. Disponível em: https://doi.org/10.1016/j.compositesb.2019.107076. Acesso em: 17 aug. 2020.

MA, J. F.; TAKAHASHI, E. Soil, fertilizer, and plant silicon research in Japan. 1. ed. Amsterdam, Países Baixos: Elsevier Scinece B.V., 2002.

MARTIRENA, F.; MONZÓ, J. Vegetable ashes as supplementary cementitious materials. Cement and Concrete Research, Amsterdan, Países Baixos, v. 114, p. 57-64, August, 2018. Disponível em: https://doi.org/10.1016/j.cemconres.2017.08.015. Acesso em: 17 aug. 2020.

MASSAZZA, F. Pozzolanic cements. Cement and Concrete Composites, Amsterdan, Países Baixos, v. 15, n. 4, p. 185-214, 1993. Disponível em: https://doi.org/10.1016/0958-9465(93)90023-3. Acesso em: 17 aug. 2020.

MEHTA, P. K.; MONTEIRO, P. J. M. Concrete: microstructre, properties, and materials. 3. ed. [s. l.]: The McGraw-Hill Companies, Inc., 2006.

MEMON, S. A. et al. Environmentally friendly utilization of wheat straw ash in cement-based composites. Sustainability (Switzerland), v. 10, n. 5, p. 1-21, 2018. Disponível em: https://doi.org/10.3390/su10051322. Acesso em: 17 aug. 2020.

MO, K. H. et al. Green concrete partially comprised of farming waste residues: a review. Journal of Cleaner Production, Amsterdan, Países Baixos, v. 117, p. 122-138, 2016. Disponível em: https://doi.org/10.1016/j.jclepro.2016.01.022. Acesso em: 17 aug. 2020.

MOOSBERG-BUSTNES, H.; LAGERBLAD, B.; FORSSBERG, E. The function of fillers in concrete. Materials and Structures, v. 37, n. 2, p. 74-81, 2004. Disponível em: https://doi.org/10.1007/bf02486602. Acesso em: 17 aug. 2020.

MORAES, M. J. B. et al. Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Construction and Building Materials, Amsterdan, Países Baixos, v. 208, p. 369-380, 2019. Disponível em: https://doi.org/10.1016/j.conbuildmat.2019.03.007. Acesso em: 17 aug. 2020.

MOSLEY, S. All About Bamboo Plants: how to grow a bambooplant. [s. l.]: Lulu Press Inc., 2013.

MOTOMURA, H.; HIKOSAKA, K.; SUZUKI, M. Relationships between photosynthetic activity and silica accumulation with ages of leaf in Sasa veitchii (Poaceae, Bambusoideae). Annals of Botany, v. 101, n. 3, p. 463-468, 2008. Disponível em: https://doi.org/10.1093/aob/mcm301. Acesso em: 17 aug. 2020.

MUJEDU, K. A. et al. Evaluation of physical and mechanical properties of partially replaced bamboo ash cement mortar. The International Journal of Engineering and Science, v. 7, n. 3, p. 35-41, 2018. Disponível em: https://doi.org/10.9790/1813-0703013541. Acesso em: 17 aug. 2020.

MUJEDU, K. A.; ADEBARA, S. A.; LAMIDI, I. O. The use of corn cob ash and saw dust ash as cement replacement in concrete works. The International Journal Of Engineering And Science, v. 3, n. 4, p. 22-28, 2014. Disponível em: http://theijes.com/papers/v3-i4/Version-1/D03401022028.pdf. Acesso em: 17 aug. 2020.

NAKANISHI, E. Y. et al. Investigating the possible usage of elephant grass ash to manufacture the eco-friendly binary cements. Journal of Cleaner Production, Amsterdan, Países Baixos, v. 116, p. 236-243, 2016. Disponível em: https://doi.org/10.1016/j.jclepro.2015.12.113. Acesso em: 17 aug. 2020.

NATARAJAN, S.; KARUPPIAH, G. Hierarchical order of influence of mix variables affecting compressive strength of sustainable concrete containing fly ash, copper slag, silica fume, and fibres. The Scientific World Journal, v. 2014, p. 11, 2014. Disponível em: https://doi.org/10.1155/2014/646840. Acesso em: 17 aug. 2020.

NEVILLE, A. M. Propriedades dos agregados. In: Propriedades do concreto. 5 ed. Porto Alegre: Bookman, p. 111-189, 2016.

OLAFUSI, O.; OLUTOGE, F. A. Strength properties of corn cob ash concrete strength properties of corn cob ash concrete. Journal of Emerging Trends in Engineering and Applied Sciences, v. 3, n. 2, p. 297-301, 2012.

OLONADE, K. A.; JAJI, M. B.; ADEKITAN, O. A. Experimental comparison of selected pozzolanic materials. African Journal of Science, Technology, Innovation and Development, v. 9, n. 4, p. 381-385, 2017. Disponível em: https://doi.org/10.1080/20421338.2017.1327931. Acesso em: 17 aug. 2020.

OLUTOGE, F. A.; OLADUNMOYE, O. M. Bamboo leaf ash as supplementary cementitious material. American Journal of Engineering Research, v. 6, n. 6, p. 1-8, 2017.

ONIKEKU, O. et al. Evaluation of characteristics of concrete mixed with bamboo leaf ash. The Open Construction & Building Technology Journal, v. 13, n. 1, p. 67-80, 2019. Disponível em: https://doi.org/10.2174/1874836801913010067. Acesso em: 17 aug. 2020.

RODIER, L. et al. Study of pozzolanic activity of bamboo stem ashes for use as partial replacement of cement. Materials and Structures/Materiaux et Constructions, v. 50, n. 1, 2017. Disponível em: https://doi.org/10.1617/s11527-016-0958-6. Acesso em: 17 aug. 2020.

RODIER, L. et al. Potential use of sugarcane bagasse and bamboo leaf ashes for elaboration of green cementitious materials. Journal of Cleaner Production, Amsterdan, Países Baixos, v. 231, p. 54-63, 2019. Disponível em: https://doi.org/10.1016/j.jclepro.2019.05.208. Acesso em: 17 aug. 2020.

ROSELLÓ, J. et al. Microscopy characterization of silica-rich agrowastes to be used in cement binders: bamboo and sugarcane leaves. Microscopy and Microanalysis, v. 21, n. 5, p. 1314-1326, 2015. Disponível em: https://doi.org/10.1017/S1431927615015019. Acesso em: 17 aug. 2020.

SHAFIQ, N. et al. Effects of sugarcane bagasse ash on the properties of concrete. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, v. 171, n. 3, p. 123-132, 2018. Disponível em: https://doi.org/10.1680/jensu.15.00014. Acesso em: 17 aug. 2020.

SILVA, C. et al. StArt. [s. l.]: Laboratório de Pesquisa em Engenharia de Software (LaPES), São Carlos, 2016.

SINGH, N. B. et al. Hydration of bamboo leaf ash blended Portland cement. Indian Journal of Engineering and Materials Sciences, v. 14, n. 1, p. 69-76, 2007.

TAMBICHIK, M. A. et al. Utilization of construction and agricultural waste in Malaysia for development of green concrete: a review. IOP Conference Series: Earth and Environmental Science, v. 140, p. 9, 2018. Disponível em: https://doi.org/10.1088/1755-1315/140/1/012134. Acesso em: 17 aug. 2020.

THOMAS, M. Supplementary cementing materials in concrete. In: Supplementary Cementing Materials in Concrete, v. 32, p. 1-181, 2013. Disponível em: https://doi.org/10.1201/b14493.

UMEMURA, M.; TAKENAKA, C. Biological cycle of silicon in moso bamboo (Phyllostachys pubescens) forests in central Japan. Ecological Research, v. 29, n. 3, p. 501-510, 2014. Disponível em: https://doi.org/10.1007/s11284-014-1150-5. Acesso em: 17 aug. 2020.

UMOH, A. A.; ODESOLA, I. Characteristics of bamboo leaf ash blended cement paste and mortar. Civil Engineering Dimension, v. 17, n. 1, p. 22-28, 2015. Disponível em: https://doi.org/10.9744/ced.17.1.22-28. Acesso em: 17 aug. 2020.

UMOH, A. A.; UJENE, A. O. Empirical study on effect of bamboo leaf ash in concrete. Journal of Engineering and Technology, Hyderabad, Índia, v. 5, n. 2, p. 71-82, 2014.

VANDANAPU, S. N.; KRISHNAMURTHY, M. Seismic performance of lightweight concrete structures. Advances in Civil Engineering, Londres, Reino Unido, p. 6, 2018. Disponível em: https://doi.org/10.1155/2018/2105784. Acesso em: 17 aug. 2020.

VASSILEV, S. V. et al. An overview of the chemical composition of biomass. Fuel, Amsterdan, Países Baixos, v. 89, n. 5, p. 913-933, 2010. Disponível em: https://doi.org/10.1016/j.fuel.2009.10.022. Acesso em: 17 aug. 2020.

VILLAR-COCIÑA, E. et al. Pozzolanic behavior of bamboo leaf ash: characterization and determination of the kinetic parameters. Cement and Concrete Composites, Amsterdan, Países Baixos, v. 33, n. 1, p. 68-73, 2011. Disponível em: https://doi.org/10.1016/j.cemconcomp.2010.09.003. Acesso em: 17 aug. 2020.

VILLAR-COCIÑA, E. et al. Pozzolanic characterization of cuban bamboo leaf ash: calcining temperature and kinetic parameters. Waste and Biomass Valorization, Londres, Reino Unido, v. 9, n. 4, p. 691-699, 2018. Disponível em: https://doi.org/10.1007/s12649-016-9741-8. Acesso em: 17 aug. 2020.

YADAV, A. L. et al. An overview of the influences of mechanical and chemical processing on sugarcane bagasse ash characterisation as a supplementary cementitious material. Journal of Cleaner Production, Amsterdan, Países Baixos, v. 245, p. 118854, 2020. Disponível em: https://doi.org/10.1016/j.jclepro.2019.118854. Acesso em: 17 aug. 2020.

CORDEIRO, G. C.; SALES, C. P. Pozzolanic activity of elephant grass ash and its influence on the mechanical properties of concrete. Cement and Concrete Composites, Amsterdan, Países Baixos, v. 55, p. 331-336, 2015. Disponível em: https://doi.org/10.1016/j.cemconcomp.2014.09.019. Acesso em: 17 aug. 2020.

CORDEIRO, G. C.; TOLEDO FILHO, R. D.; FAIRBAIRN, E. M. R. Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, Amsterdan, Países Baixos, v. 23, n. 10, p. 3301-3303, 2009. Disponível em: https://doi.org/10.1016/j.conbuildmat.2009.02.013. Acesso em: 17 aug. 2020.

CROW, J. The concrete conundrum. Chemistry World, Londres, Reino Unido, p. 62-64, 2008.

DAMINELI, B. L.; PILLEGGI, R. G.; JOHN, V. M. Influence of packing and dispersion of particles on the cement content of concretes. Revista IBRACON de Estruturas e Materiais, São Paulo, v. 10, n. 5, p. 998-1024, 2017. Disponível em: https://doi.org/10.1590/s1983-41952017000500004. Acesso em: 17 aug. 2020.

DAMTOFT, J. S. et al. Sustainable development and climate change initiatives. Cement and Concrete Research, Amsterdan, Países Baixos, v. 38, n. 2, p. 115-127, 2008. Disponível em: https://doi.org/10.1016/j.cemconres.2007.09.008. Acesso em: 17 aug. 2020.

DAVID, N. L.; HASSAN, L. K. Physical and mechanical properties of cement mortar using lime and bamboo-ash as partial replacements. Malaysian Journal of Civil Engineering, Johor Bahru, Malásia, v. 30, n. 2, p. 254-268, 2018. Acesso em: 17 aug. 2020.

DHENGARE, S. et al. Fineness effect of sugarcane bagasse ash, rice husk ash, and fly ash on strength of concrete. International Research Journal of Engineering and Technology, Hyderabad, Índia, v. 6, n. 2, p. 121-126, 2019. Acesso em: 17 aug. 2020.

DHINAKARAN, G.; CHANDANA, G. H. Compressive strength and durability of bamboo leaf ash concrete. Jordan Journal of Civil Engineering, Irbid, Jordânia, v. 10, n. 3, p. 279-289, 2016. Disponível em: https://doi.org/10.14525/jjce.10.3.3601. Acesso em: 17 aug. 2020.

DUCHESNE, J. Alternative supplementary cementitious materials for sustainable concrete structures: a review on characterization and properties. Waste and Biomass Valorization, n. 0123456789, 2020. Disponível em: https://doi.org/10.1007/s12649-020-01068-4. Acesso em: 17 aug. 2020.

DWIVEDI, V. N. et al. A new pozzolanic material for cement industry: bamboo leaf ash. International Journal of Physical Sciences, v. 1, n. 3, p. 106-111, 2006.

FRÍAS, M. et al. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cement and Concrete Composites, Amsterdan, Países Baixos, v. 34, n. 9, p. 1019-1023, 2012. Disponível em: https://doi.org/10.1016/j.cemconcomp.2012.05.005. Acesso em: 17 aug. 2020.

HABEEB, G. A.; MAHMUD, H. B. Study on properties of rice husk ash and its use as cement replacement material. Materials Research, v. 13, n. 2, p. 185-190, 2010.

HEIRI, O.; LOTTER, A. F.; LEMCKE, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, v. 25, p. 101-110, 2001.

HELANDER, M. et al. Endophytic fungi and silica content of different bamboo species in giant panda diet. Symbiosis, v. 61, n. 1, p. 13-22, 2013. Disponível em: https://doi.org/10.1007/s13199-013-0253-z. Acesso em: 17 aug. 2020.

HIDALGO-LÓPEZ, O. Bamboo: the gift of the gods. Bogotá, Colombia: The author, 2003.

IKEAGWUANI, C. C. et al. Potential of bamboo stem ash as aupplementary cementitious material in concrete production. International Journal of Engineering Research &Technology, v. 8, n. 08, p. 75-80, 2019.

IKUMAPAYI, C. M. Crystal and microstructure analysis of Pozzolanic properties of bamboo leaf ash and locust beans pod ash blended cement concrete. Journal of Applied Sciences and Environmental Management, v. 20, n. 4, p. 943, 2017. Disponível em: https://doi.org/10.4314/jasem.v20i4.6. Acesso em: 17 aug. 2020.

JAYA, R. P. et al. Properties of mortar containing rice husk ash at different temperature and exposed to aggressive environment. Advanced Materials Research, v. 620, p. 87–93, 2013. https://doi.org/10.4028/www.scientific.net/AMR.620.87. Acesso em: 17 aug. 2020.

KAZA, S. et al. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington: International Bank for Reconstruction and Development/The World Bank, 2018.

KOLAWOLE, J. T.; OLUSOLA, K. O.; ATA, O. Strength of bamboo leaf ash and pulverized burnt clay waste blended cement concrete. IOSR Journal of Mechanical and Civil Engineering Ver. II, v. 12, n. 6, p. 36-42, 2015. Disponível em: https://doi.org/10.9790/1684-12623642. Acesso em: 17 aug. 2020.

LIAN, C.; ZHUGE, Y.; BEECHAM, S. The relationship between porosity and strength for porous concrete. Construction and Building Materials, Amsterdan, Países Baixos, v. 25, n. 11, p. 4294-4298, 2011. Disponível em: https://doi.org/10.1016/j.conbuildmat.2011.05.005. Acesso em: 17 aug. 2020.

LIBRE, N. A. et al. Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials, Amsterdan, Países Baixos, v. 25, n. 5, p. 2458-2464, 2011. Disponível em: https://doi.org/10.1016/j.conbuildmat.2010.11.058. Acesso em: 17 aug. 2020.

LUHAR, S.; CHENG, T. W.; LUHAR, I. Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: a review. Composites Part B: Engineering, Amsterdan, Países Baixos, v. 175, n. March, p. 107076, 2019. Disponível em: https://doi.org/10.1016/j.compositesb.2019.107076. Acesso em: 17 aug. 2020.

MA, J. F.; TAKAHASHI, E. Soil, fertilizer, and plant silicon research in Japan. 1. ed. Amsterdam, Países Baixos: Elsevier Scinece B.V., 2002.

MARTIRENA, F.; MONZÓ, J. Vegetable ashes as supplementary cementitious materials. Cement and Concrete Research, Amsterdan, Países Baixos, v. 114, p. 57-64, August, 2018. Disponível em: https://doi.org/10.1016/j.cemconres.2017.08.015. Acesso em: 17 aug. 2020.

MASSAZZA, F. Pozzolanic cements. Cement and Concrete Composites, Amsterdan, Países Baixos, v. 15, n. 4, p. 185-214, 1993. Disponível em: https://doi.org/10.1016/0958-9465(93)90023-3. Acesso em: 17 aug. 2020.

MEHTA, P. K.; MONTEIRO, P. J. M. Concrete: microstructre, properties, and materials. 3. ed. [s. l.]: The McGraw-Hill Companies, Inc., 2006.

MEMON, S. A. et al. Environmentally friendly utilization of wheat straw ash in cement-based composites. Sustainability (Switzerland), v. 10, n. 5, p. 1-21, 2018. Disponível em: https://doi.org/10.3390/su10051322. Acesso em: 17 aug. 2020.

MO, K. H. et al. Green concrete partially comprised of farming waste residues: a review. Journal of Cleaner Production, Amsterdan, Países Baixos, v. 117, p. 122-138, 2016. Disponível em: https://doi.org/10.1016/j.jclepro.2016.01.022. Acesso em: 17 aug. 2020.

MOOSBERG-BUSTNES, H.; LAGERBLAD, B.; FORSSBERG, E. The function of fillers in concrete. Materials and Structures, v. 37, n. 2, p. 74-81, 2004. Disponível em: https://doi.org/10.1007/bf02486602. Acesso em: 17 aug. 2020.

MORAES, M. J. B. et al. Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Construction and Building Materials, Amsterdan, Países Baixos, v. 208, p. 369-380, 2019. Disponível em: https://doi.org/10.1016/j.conbuildmat.2019.03.007. Acesso em: 17 aug. 2020.

MOSLEY, S. All About Bamboo Plants: how to grow a bambooplant. [s. l.]: Lulu Press Inc., 2013.

MOTOMURA, H.; HIKOSAKA, K.; SUZUKI, M. Relationships between photosynthetic activity and silica accumulation with ages of leaf in Sasa veitchii (Poaceae, Bambusoideae). Annals of Botany, v. 101, n. 3, p. 463-468, 2008. Disponível em: https://doi.org/10.1093/aob/mcm301. Acesso em: 17 aug. 2020.

MUJEDU, K. A. et al. Evaluation of physical and mechanical properties of partially replaced bamboo ash cement mortar. The International Journal of Engineering and Science, v. 7, n. 3, p. 35-41, 2018. Disponível em: https://doi.org/10.9790/1813-0703013541. Acesso em: 17 aug. 2020.

MUJEDU, K. A.; ADEBARA, S. A.; LAMIDI, I. O. The use of corn cob ash and saw dust ash as cement replacement in concrete works. The International Journal Of Engineering And Science, v. 3, n. 4, p. 22-28, 2014. Disponível em: http://theijes.com/papers/v3-i4/Version-1/D03401022028.pdf. Acesso em: 17 aug. 2020.

NAKANISHI, E. Y. et al. Investigating the possible usage of elephant grass ash to manufacture the eco-friendly binary cements. Journal of Cleaner Production, Amsterdan, Países Baixos, v. 116, p. 236-243, 2016. Disponível em: https://doi.org/10.1016/j.jclepro.2015.12.113. Acesso em: 17 aug. 2020.

NATARAJAN, S.; KARUPPIAH, G. Hierarchical order of influence of mix variables affecting compressive strength of sustainable concrete containing fly ash, copper slag, silica fume, and fibres. The Scientific World Journal, v. 2014, p. 11, 2014. Disponível em: https://doi.org/10.1155/2014/646840. Acesso em: 17 aug. 2020.

NEVILLE, A. M. Propriedades dos agregados. In: Propriedades do concreto. 5 ed. Porto Alegre: Bookman, p. 111-189, 2016.

OLAFUSI, O.; OLUTOGE, F. A. Strength properties of corn cob ash concrete strength properties of corn cob ash concrete. Journal of Emerging Trends in Engineering and Applied Sciences, v. 3, n. 2, p. 297-301, 2012.

OLONADE, K. A.; JAJI, M. B.; ADEKITAN, O. A. Experimental comparison of selected pozzolanic materials. African Journal of Science, Technology, Innovation and Development, v. 9, n. 4, p. 381-385, 2017. Disponível em: https://doi.org/10.1080/20421338.2017.1327931. Acesso em: 17 aug. 2020.

OLUTOGE, F. A.; OLADUNMOYE, O. M. Bamboo leaf ash as supplementary cementitious material. American Journal of Engineering Research, v. 6, n. 6, p. 1-8, 2017.

ONIKEKU, O. et al. Evaluation of characteristics of concrete mixed with bamboo leaf ash. The Open Construction & Building Technology Journal, v. 13, n. 1, p. 67-80, 2019. Disponível em: https://doi.org/10.2174/1874836801913010067. Acesso em: 17 aug. 2020.

RODIER, L. et al. Study of pozzolanic activity of bamboo stem ashes for use as partial replacement of cement. Materials and Structures/Materiaux et Constructions, v. 50, n. 1, 2017. Disponível em: https://doi.org/10.1617/s11527-016-0958-6. Acesso em: 17 aug. 2020.

RODIER, L. et al. Potential use of sugarcane bagasse and bamboo leaf ashes for elaboration of green cementitious materials. Journal of Cleaner Production, Amsterdan, Países Baixos, v. 231, p. 54-63, 2019. Disponível em: https://doi.org/10.1016/j.jclepro.2019.05.208. Acesso em: 17 aug. 2020.

ROSELLÓ, J. et al. Microscopy characterization of silica-rich agrowastes to be used in cement binders: bamboo and sugarcane leaves. Microscopy and Microanalysis, v. 21, n. 5, p. 1314-1326, 2015. Disponível em: https://doi.org/10.1017/S1431927615015019. Acesso em: 17 aug. 2020.

SHAFIQ, N. et al. Effects of sugarcane bagasse ash on the properties of concrete. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, v. 171, n. 3, p. 123-132, 2018. Disponível em: https://doi.org/10.1680/jensu.15.00014. Acesso em: 17 aug. 2020.

SILVA, C. et al. StArt. [s. l.]: Laboratório de Pesquisa em Engenharia de Software (LaPES), São Carlos, 2016.

SINGH, N. B. et al. Hydration of bamboo leaf ash blended Portland cement. Indian Journal of Engineering and Materials Sciences, v. 14, n. 1, p. 69-76, 2007.

TAMBICHIK, M. A. et al. Utilization of construction and agricultural waste in Malaysia for development of green concrete: a review. IOP Conference Series: Earth and Environmental Science, v. 140, p. 9, 2018. Disponível em: https://doi.org/10.1088/1755-1315/140/1/012134. Acesso em: 17 aug. 2020.

THOMAS, M. Supplementary cementing materials in concrete. In: Supplementary Cementing Materials in Concrete, v. 32, p. 1-181, 2013. Disponível em: https://doi.org/10.1201/b14493.

UMEMURA, M.; TAKENAKA, C. Biological cycle of silicon in moso bamboo (Phyllostachys pubescens) forests in central Japan. Ecological Research, v. 29, n. 3, p. 501-510, 2014. Disponível em: https://doi.org/10.1007/s11284-014-1150-5. Acesso em: 17 aug. 2020.

UMOH, A. A.; ODESOLA, I. Characteristics of bamboo leaf ash blended cement paste and mortar. Civil Engineering Dimension, v. 17, n. 1, p. 22-28, 2015. Disponível em: https://doi.org/10.9744/ced.17.1.22-28. Acesso em: 17 aug. 2020.

UMOH, A. A.; UJENE, A. O. Empirical study on effect of bamboo leaf ash in concrete. Journal of Engineering and Technology, Hyderabad, Índia, v. 5, n. 2, p. 71-82, 2014.

VANDANAPU, S. N.; KRISHNAMURTHY, M. Seismic performance of lightweight concrete structures. Advances in Civil Engineering, Londres, Reino Unido, p. 6, 2018. Disponível em: https://doi.org/10.1155/2018/2105784. Acesso em: 17 aug. 2020.

VASSILEV, S. V. et al. An overview of the chemical composition of biomass. Fuel, Amsterdan, Países Baixos, v. 89, n. 5, p. 913-933, 2010. Disponível em: https://doi.org/10.1016/j.fuel.2009.10.022. Acesso em: 17 aug. 2020.

VILLAR-COCIÑA, E. et al. Pozzolanic behavior of bamboo leaf ash: characterization and determination of the kinetic parameters. Cement and Concrete Composites, Amsterdan, Países Baixos, v. 33, n. 1, p. 68-73, 2011. Disponível em: https://doi.org/10.1016/j.cemconcomp.2010.09.003. Acesso em: 17 aug. 2020.

VILLAR-COCIÑA, E. et al. Pozzolanic characterization of cuban bamboo leaf ash: calcining temperature and kinetic parameters. Waste and Biomass Valorization, Londres, Reino Unido, v. 9, n. 4, p. 691-699, 2018. Disponível em: https://doi.org/10.1007/s12649-016-9741-8. Acesso em: 17 aug. 2020.

YADAV, A. L. et al. An overview of the influences of mechanical and chemical processing on sugarcane bagasse ash characterisation as a supplementary cementitious material. Journal of Cleaner Production, Amsterdan, Países Baixos, v. 245, p. 118854, 2020. Disponível em: https://doi.org/10.1016/j.jclepro.2019.118854. Acesso em: 17 aug. 2020.

Creative Commons License

Esta obra está bajo licencia Creative Commons Attribution-NonCommercial 4.0 International License.

Derechos de autor 2021 Array